Temporal Information Entropy of the Blood-Oxygenation Level-Dependent Signals Increases in the Activated Human Primary Visual Cortex
نویسندگان
چکیده
Time-domain analysis of blood-oxygenation level-dependent (BOLD) signals allows the identification of clusters of voxels responding to photic stimulation in primary visual cortex (V1). However, the characterization of information encoding into temporal properties of the BOLD signals of an activated cluster is poorly investigated. Here, we used Shannon entropy to determine spatial and temporal information encoding in the BOLD signal within the most strongly activated area of the human visual cortex during a hemifield photic stimulation. We determined the distribution profile of BOLD signals during epochs at rest and under stimulation within small (19-121 voxels) clusters designed to include only voxels driven by the stimulus as highly and uniformly as possible. We found consistent and significant increases (2-4% on average) in temporal information entropy during activation in contralateral but not ipsilateral V1, which was mirrored by an expected loss of spatial information entropy. These opposite changes coexisted with increases in both spatial and temporal mutual information (i.e., dependence) in contralateral V1. Thus, we showed that the first cortical stage of visual processing is characterized by a specific spatiotemporal rearrangement of intracluster BOLD responses. Our results indicate that while in the space domain BOLD maps may be incapable of capturing the functional specialization of small neuronal populations due to relatively low spatial resolution, some information encoding may still be revealed in the temporal domain by an increase of temporal information entropy.
منابع مشابه
Repeatability of Detecting Visual Cortex Activity in Functional Magnetic Resonance Imaging
Introduction As functional magnetic resonance imaging (fMRI) is too expensive and time consuming, its frequent implementation is difficult. The aim of this study is to evaluate repeatability of detecting visual cortex activity in fMRI. Materials and Methods In this study, 15 normal volunteers (10 female, 5 male; Mean age±SD: 24.7±3.8 years) attended. Functional magnetic resonance images were ob...
متن کاملStimulus-dependent BOLD and perfusion dynamics in human V1.
Blood oxygenation level-dependent (BOLD) fMRI signals often exhibit pronounced over- or undershoot upon changes in stimulation state. Current models postulate that this is due to the delayed onset or decay of perfusion-dependent attenuating responses such as increased cerebral blood volume or oxygen consumption, which are presumed to lag behind the rapid adjustment of blood flow rate to a new s...
متن کاملA spatial and temporal comparison of hemodynamic signals measured using optical and functional magnetic resonance imaging during activation in the human primary visual cortex.
Functional near infrared spectro-imaging (fNIRSI) is potentially a very useful technique for obtaining information about the underlying physiology of the blood oxygenation level dependent (BOLD) signal used in functional magnetic resonance imaging (fMRI). In this paper the temporal and spatial statistical characteristics of fNIRSI data are compared to those of simultaneously acquired fMRI data ...
متن کاملDecreases of blood oxygenation level--dependent signal in the activated motor cortex during functional recovery after resection of a glioma.
The present case demonstrates that the blood oxygenation level-dependent (BOLD) signal intensity can decrease in the activated motor cortex on the lesion side (left) of a patient with a left frontal glioma during functional recovery after surgery. Near-infrared spectroscopy revealed that the decrease of BOLD signal was associated with increases of cerebral blood volume and deoxyhemoglobin conce...
متن کاملAudiovisual temporal correspondence modulates human multisensory superior temporal sulcus plus primary sensory cortices.
The brain should integrate related but not unrelated information from different senses. Temporal patterning of inputs to different modalities may provide critical information about whether those inputs are related or not. We studied effects of temporal correspondence between auditory and visual streams on human brain activity with functional magnetic resonance imaging (fMRI). Streams of visual ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 5 شماره
صفحات -
تاریخ انتشار 2017